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1. Introduction 

1.1 Background 

Osseous tissue is known to contain a high mineral content, which includes a high concentration of 

calcium (Ca
2+

).  For applications involving conventional histology, i.e. microtome sectioning, staining, 

and visualization via light microscopy, this mineral must be removed prior to bone preparation and 

sectioning for these applications.  For the demineralizing process, two common agents are used: acid 

demineralizers and chelating agents.  Acid demineralizers, such as hydrochloric acid (HCl), are known for 

their ability to rapidly demineralize bone tissue, but often these chemicals cause undesirable distortion of 

tissue structures causing loss of nuclear staining and maceration of tissues (figure 1) [1-3]. 

 

 
Figure 1: A section of decalcified cancellous bone decalcified with HCl. The staining is poor with an absence 
of nuclear staining. [1] 

Alternatively, chelating agents can be used to demineralize bone tissue while preserving the 

integrity of intercellular structures. Chelating agents capture polyvalent ions, such as calcium, from the 

surface of mineral crystals in bone and slowly reducing their size. However, these agents generally 

remove minerals at a much slower rate than acid demineralizers.  One such chelating agent, 

ethylenediaminetetraacetic acid (EDTA), binds to the calcium ions and effectively removes them from the 

surrounding tissue when introduced into porous bone (Figure 2) [3]. Salts of EDTA are noncolloidal 

organic chelating agents which form soluble nonionic chelates with polyvalent ions. Calcium is strongly 

chelated above pH 6 with activity plateauing above pH 7.5 [3]. Using X-ray, the process of 

demineralization can be tracked to specified end points (Figure 3). 



 
Figure 2: Chelating reaction of EDTA with calcium [4] 

 
Figure 3: Radiographs following the process of decalcification of a femoral head [1] 

Factors influencing the rate of decalcification include concentration, temperature, agitation, and 

fluid access [1]. In addition, it has been emphasized that diffusion plays an important role in the 

progression of decalcification [5]. The appropriate concentration balances the need for rapid 

decalcification with the degree with tissue damage. As the demineralizing agent combines with calcium, 

the concentration of active agent will be depleted with time. Similarly, temperature increases the speed of 

decalcification through enhanced kinetics, but will also increase the rate of tissue damage. Agitation of 

the fluid as well as fluid access to the bone specimen will also enhance the rate of demineralization. To 

maximize diffusion and ingress of the demineralizing agent into the specimen, all surfaces of the 

specimen should be exposed.  

1.2 Problem Statement 

This purpose of this project was to develop a mathematical model displaying the diffusion of a 

demineralizing agent into bone given various parameters.  These parameters are outlined as follows: 

 

a. Diffusion of EDTA into thin bone slices, with the bone placed in an apparatus that allows for 

diffusion of steady-state EDTA in a single direction through the bone. 

b. Comparison of diffusion with alterations to the demineralizing agent (EDTA vs. HCl). 

c. EDTA reacts with calcium as a function of time. 

d. EDTA pumped at a controlled rate into the bone slice. 

 



2. Analytical Solution: Case 1 

2.1 Assumptions 

In the diffusion of EDTA into thin bone slices we will assume that the apparatus is designed such 

that EDTA diffuses through only one face of the slice and that there is no flux at the bottom face. This 

assumption reduces diffusion to a single dimension. In addition, EDTA will be introduced in excess at t = 

0 s where there is initially no EDTA in the bone slice, and there is a constant concentration of C0 at the 

diffusing face. The mathematical assumptions are described below (Table 2). 

 
Table 1: Mathematical assumptions for diffusion of EDTA into thin bone slices 

Assumption Mathematical Relation 

EDTA diffuses through only one face of the slice ∂C/∂t = D ∂2C/∂x2 

EDTA (Co) is introduced in excess at t = 0 s 

There is initially no EDTA in the bone slice 

C(x,0) = Coδ(x) 

There is zero flux at the bottom edge ∂C/∂x (L,t) = 0 

There is enough EDTA to saturate the bone C(x,t➡∞) = Co  

 

1-D Diffusion 

𝜕𝑐

𝑑𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
 

 

Initial Conditions 

𝑐(𝑥, 0) =  𝐶0𝛿(𝑥) 

 

Boundary Conditions 

(0, 𝑡) =  𝐶0 

𝜕𝑐

𝑑𝑥
(𝐿, 𝑡) =  0 

 

Solution to an inhomogeneous PDE with no source term and constant spatial boundaries is of the form: 

𝑐(𝑥, 𝑡) =  𝑐𝑝(𝑥, 𝑡) + 𝑐ℎ(𝑥, 𝑡) 

 

Using the steady state condition to find the particular solution: 

𝑡 →  ∞ 

𝜕𝑐𝑝

𝑑𝑡
= 0 

𝜕𝑐𝑝

𝑑𝑡
= 𝐷

𝜕2𝑐𝑝

𝜕𝑥2
 



0 = 𝐷
𝜕2𝑐

𝜕𝑥2
 

 

The equation for the particular solution can be reduced to an ordinary differential equation of the form: 

𝑐𝑝(𝑥) =  𝐴𝑥 + 𝐵 

 

Applying boundary conditions to solve for coefficients: 

𝑩𝑪: 𝒄(𝟎) =  𝑪𝟎 

𝑐𝑝(0) =  𝐴(0) + 𝐵 = 𝐶0 

𝐵 = 𝐶0 

𝑐𝑝(𝑥) =  𝐴𝑥 + 𝐶0 

𝑩𝑪: 
𝝏𝒄

𝒅𝒙
(𝑳) =  𝟎 

𝜕𝑐𝑝

𝑑𝑥
(𝑥) =  𝐴 

𝜕𝑐𝑝

𝑑𝑥
(𝐿) =  𝐴 = 0 

𝐴 = 0 

𝑐𝑝(𝑥) =  𝐶0 

 

Solving for the homogenous solution: 

Homogenous Boundary Conditions 

𝑐ℎ(0, 𝑡) =  0 

𝜕𝑐ℎ

𝑑𝑥
(𝐿, 𝑡) =  0 

 

Deriving spatial boundaries: 

𝑐ℎ(0, 𝑡) =   ∅(0) ∗ 𝐺(𝑡) =  0 

 ∅(0)  =  0 

𝜕𝑐ℎ

𝑑𝑥
(𝐿, 𝑡) =   ∅′(𝐿) ∗ 𝐺(𝑡) =  0 

 ∅′(𝐿)  =  0 

 

Solving for the homogenous solution using separation of variables: 

𝑐ℎ(𝑥, 𝑡) =  ∅(𝑥) ∗ 𝐺(𝑡) 

𝜕𝑐ℎ

𝑑𝑡
= ∅(𝑥) ∗ 𝐺′(𝑡) 

𝜕𝑐ℎ

𝑑𝑥
= ∅′(𝑥) ∗ 𝐺(𝑡) 

𝜕2𝑐ℎ

𝜕𝑥2
= ∅′′(𝑥) ∗ 𝐺(𝑡) 

𝐺′(𝑡) ∗ ∅(𝑥) = 𝐷 ∗ ∅′′(𝑥) ∗ 𝐺(𝑡) 

1

𝐷
∗

𝐺′(𝑡)

𝐺(𝑡)
=     

∅′′(𝑥) 

∅(𝑥)
=  −𝜆 

 



For the case where λ = 0: 

∅′′(𝑥) = 0 

∅(𝑥) = 𝐴𝑥 + 𝐵 

Input BCs: 

𝐵𝐶: ∅(0) =  0 

∅(0) =  𝐴𝑥 + 𝐵 =  0 

∅(0) =  𝐴(0) + 𝐵 =  0 

𝐵 = 0 

∅(𝑥) =  𝐴𝑥 

𝐵𝐶: ∅(𝐿) =  0 

∅(𝐿) =  𝐴𝐿 =  0 

𝐴 =  0 

This yields the trivial solution for 𝜆 = 0 

 

For the case where λ < 0: 

      ∅′′(𝑥) + 𝜆 ∗ ∅(𝑥) = 0 

∅(𝑥) = 𝐴𝑒√−𝜆∗𝑥 + 𝐵𝑒−√−𝜆∗𝑥 

This yields the trivial solution for 𝜆 > 0 

 

For the case where λ > 0: 

           ∅′′(𝑥) + 𝜆 ∗ ∅(𝑥) = 0 

∅(𝑥) = 𝐴𝑐𝑜𝑠(√𝜆𝑥) + 𝐵𝑠𝑖𝑛(√𝜆𝑥) 

 

Input BCs: 

𝐵𝐶: ∅(0) =  0 

∅(0) = 𝐴𝑐𝑜𝑠(0) + 𝐵𝑠𝑖𝑛(0) = 0 

𝐴 = 0 

∅(𝑥) = 𝐵𝑠𝑖𝑛(√𝜆𝑥) 

𝐵𝐶: ∅′(𝐿) =  0 

∅′(𝑥) = −√𝜆𝐵𝑐𝑜𝑠(√𝜆𝑥) 

∅′(𝐿) = −√𝜆𝐵𝑐𝑜𝑠(√𝜆𝐿) =  0 

√𝜆𝐿 =
(2𝑛 + 1)

2
𝜋     𝑛 = 0,1,2, … 

𝜆 = (
(2𝑛 + 1)

2𝐿
𝜋)

2

 

∅𝑛(𝑥) = 𝐵𝑛𝑠𝑖𝑛 (
(2𝑛 + 1)

2𝐿
𝜋𝑥) 

 

Solving for G(t) where  λ > 0: 

𝐺′(𝑡) + 𝜆𝐷 ∗ 𝐺(𝑡) = 0 

𝐺(𝑡) =  𝑒−𝜆𝐷𝑡 

 

 



Putting together the homogenous solution: 

𝑐ℎ𝑛
(𝑥, 𝑡) =  𝐵𝑛𝑠𝑖𝑛 (

(2𝑛 + 1)

2𝐿
𝜋𝑥) 𝑒−𝜆𝐷𝑡 

𝑐ℎ𝑛
(𝑥, 𝑡) =  𝐵𝑛𝑠𝑖𝑛 (

(2𝑛 + 1)

2𝐿
𝜋𝑥) 𝑒

−𝐷(
(2𝑛+1)

2𝐿
𝜋)

2

𝑡
 

𝑐ℎ(𝑥, 𝑡) =  ∑ 𝐵𝑛𝑠𝑖𝑛 (
(2𝑛 + 1)

2𝐿
𝜋𝑥) 𝑒

−𝐷(
(2𝑛+1)

2𝐿
𝜋)

2

𝑡
𝑚

𝑛=0

 

 

Recall that C(x,t) = Cp(x,t) + Ch(x,t): 

𝑐(𝑥, 𝑡) = 𝐶0 +  ∑ 𝐵𝑛𝑠𝑖𝑛 (
(2𝑛 + 1)

2𝐿
𝜋𝑥) 𝑒

−𝐷(
(2𝑛+1)

2𝐿
𝜋)

2

𝑡
𝑚

𝑛=0

 

 

Solving for Bn: 

𝐵𝑛 =
2

𝐿
∫ [(𝑐(𝑥, 0) − 𝑐𝑝(𝑥)) ∗ 𝑐ℎ(𝑥)]𝑑𝑥

𝐿

0

 

𝐵𝑛 =
2

𝐿
∫ [(𝐶0𝛿(𝑥) − 𝐶0)𝑠𝑖𝑛 (

(2𝑛 + 1)

2𝐿
𝜋𝑥)] 𝑑𝑥

𝐿

0

 

𝐵𝑛 =
2𝐶0

𝐿
∫ (𝛿(𝑥) − 𝐶0)𝑠𝑖𝑛 (

(2𝑛 + 1)

2𝐿
𝜋𝑥) 𝑑𝑥

𝐿

0

 

𝐵𝑛 =
−4𝐶0

(2𝑛 + 1)𝜋
 

 

Final solution: 

𝑐(𝑥, 𝑡) = 𝐶0 +  ∑
−4𝐶0

(2𝑛 + 1)𝜋
𝑠𝑖𝑛 (

(2𝑛 + 1)

2𝐿
𝜋𝑥) 𝑒

−𝐷(
(2𝑛+1)

2𝐿
𝜋)

2

𝑡
𝑚

𝑛=0

 

 

2.2 Plot of the Analytical Solution 

 The analytical solution derived above was plotted using the first 20 terms of the series to generate 

the following graph (Figure 4). Initially, there is only EDTA at x=0, and no EDTA throughout the domain 

of x. This illustrates the initial conditions where C(x,0) = Co𝛅(x). However, oscillations can be seen 

throughout the initial time point. This phenomenon, the Gibb’s Phenomenon, occurs when fourier series 

are used to model jump discontinuities, such as the delta function, resulting in oscillations near the jump. 

In addition, as t➡∞ the plot saturates at C0, where C0=0.7 M EDTA, reflecting the zero flux boundary 

condition at x=L=2 mm. Thus, the graph supports the initial and boundary conditions assumed. Therefore 

this model for the diffusion of EDTA through thin bone slices implies that the given bone slice will 

saturate with EDTA as t➡∞ at a rate dependent on the diffusivity. 



 
Figure 4: Fourier expansion of the analytical solution using the first 20 terms. 

3. Numerical Solution 

3.1 Case 1: Modeling Different Acid Demineralizers  

Given that the diffusion of EDTA through thin bone slices implies that the given bone slice will 

saturate with EDTA as t➡∞ at a rate dependent on the diffusivity, the diffusivity of two concentration of 

HCl, an acid demineralizing agent, were input into the model according to the following table (Table 3). 

Although acid demineralizers such as HCl are known to cause undesirable distortion of tissue structures 

they have been shown to result in more rapid decalcification of bone slices. 

 
Table 2: Diffusion coefficients for various demineralization agents used for histological sections. 

 D (m
2
/s)  

0.7 M EDTA [6] 0.95 X 10
-9 

0.5 M HCl [7]  2.31 X 10
-9 

2 M HCL [7] 1.33 X 10
-9 

 

 

 

 

 

 



A

 

D

 

B

 

E

 

C

 

F

 

Figure 5: The diffusion of 0.7 M EDTA (A), 0.5 M HCl (B) and 2M HCl (C) are plotted. Isolating time points at 
t=0 (D) and t=2000 s (E) illustrate how diffusivity affects diffusion of the agent through the substrate. In 
addition, by plotting the concentration as a function of time at the bottom edge of the slice (F) the time 
required to reach steady state can be calculated. 



 The above graphs (Figure 5) illustrate the dependence of diffusion on the diffusion coefficient. 

Agents that have a higher diffusivity diffuse through the sample at a faster rate and reach steady state the 

quickest. Diffusivity of a liquid is dependent on temperature and viscosity. Accordingly, the higher 

concentration of HCL (2M v. 0.5M) has a lower diffusivity in part due to its higher viscosity. Therefore, 

although it may react faster with the bone than lower concentrations, the ingress of 2M HCl into the bone 

will be slower. In addition the action of acid decalcifiers compared to other agents (such as EDTA) on the 

bone must be considered. Thus, when choosing a demineralizing agent to decalcify a histologic sample it 

is important to consider not only the rate at which the bone can be demineralized but also the effect each 

agent will have on the bone sample. 

3.2 Case 2: Reaction with Calcium 

To create a more realistic model of EDTA diffusion and the resultant demineralization of bone, 

the reaction of EDTA reacts with calcium as a function of time was modeled (Figure 6, 7). As the 

concentration of EDTA increases throughout the bone segment with time, so does the sequestering of 

calcium by EDTA. This action was modeled as a time-dependent sink through which the calcium-EDTA 

complex is removed from the system using a rate constant of 2 × 10−8, which is ~2 orders of magnitude 

smaller than the diffusivity for 0.7 M EDTA. Due to the reaction of calcium with EDTA, the 

concentration of EDTA decreases as t ∞. 

𝜕𝑐

𝑑𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
− (2 × 10−8)𝑡 

Initial Conditions 

𝑐(𝑥, 0) =  𝐶0𝛿(𝑥) 

Boundary Conditions 

(0, 𝑡) =  𝐶0 

𝜕𝑐

𝑑𝑥
(𝐿, 𝑡) =  0 

 

 
Figure 6: Plot of numerical solution where reaction with calcium is modeled as a constant sink 



 
Figure 7: Plot of numerical solution where reaction with calcium is modeled as a constant sink at t= 1s, 500s, 

2,000s, and 10,000s 

3.3 Case 3: Flow Conditions 

 Thorough agitation and flow of the demineralizing agent through the bone slice is necessary to 

enhance the rate of decalcification. Thus, the implementation of a pump which introduces EDTA at a 

controlled rate through the diffusing face of the slice was modeled as a function of time (Figure 8, 9).  

𝜕𝑐

𝑑𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
− (2 × 10−8)𝑡 

Initial Conditions 

𝑐(𝑥, 0) =  𝐶0𝛿(𝑥) 

Boundary Conditions 

𝜕𝑐

𝑑𝑥
(0, 𝑡) = 0.005 (sin 𝑡 + 𝐶0) 

𝜕𝑐

𝑑𝑥
(𝐿, 𝑡) =  0 



 
Figure 8: Plot of numerical solution where there is a inhomogeneous flux condition 

 

 
Figure 9: Plot of numerical solution where there is a inhomogeneous flux condition, modeled as a constant 

sink at t= 1s, 500s, 2,000s, and 10,000s 

4. Conclusion 

 In preparation for histology, it is common to demineralize bone tissue prior to sample sectioning 

and imaging.  For this demineralizing process, the focus is placed largely on removing calcium from the 

tissue.  For our model, we sought to use mathematical methods to examine various components of the 

demineralizing process and were able to show that the simple diffusion of a demineralizing agent into 

bone can be affected by several different elements of the process, namely the type of demineralizing agent 

and how the agent is presented to the bone sample.  Through the development of a model, along with 

several modifications to the model, taking into account various modifications to the experiment, we were 

able to determine the diffusion rate of a given demineralizing agent into bone. 



 Moving forward, there are many areas for improvement of the model.  One such area falls in 

taking account for the complex vasculature of the bone tissue; the model could be altered to include not 

only diffusion through the pores in the tissue but also the vascular channels.  Similarly, though our model 

assumed a flat, rectangular shape for our tissue sample, a future model could encompass different shapes 

for the tissue section and even diffusion through multiple faces.  Though there are also other areas for 

improvement, taking any of these concepts into consideration would create a more accurate and complex 

model for our problem. 

This model could prove to be useful in many real life applications, namely those pertaining to 

histology.  In lab and experimental applications the largest issue encountered, and the initial reason for the 

development of this model, is predicting the amount of time for the demineralization to occur.  Our model 

addresses this issue and accounts for many variations of the process.  Because of this, the model could 

prove useful in increasing efficiency of this type of experimentation by allowing for better estimation of 

osseous demineralization. 

 

5. Matlab Code 

5.1 Case 1 

5.1.1 Analytical: Modeling EDTA Diffusion 

close all 
clear all 
clc 

  
ns = 20;% Number of Terms 

  
global D L c0 
D = 0.00095; %diffusion coefficient (mm2/s) 
L = 2; %thickness of bone slice (mm) 
c0 = .7; %initial concentration (M) 

  
% domain 
dx = 0.02; % step size in x dimension 
dt = 100; % step size in t dimension 
xmesh = 0:dx:L; % domain in x; L/2 = 1 
tmesh = 0:dt:10000; % domain in t (s) 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 

  
% solution on bounded domain using separation of variables 
sol_sep = zeros(nt, nx); 
sol_sep=sol_sep+c0; 

     
for n = 0:1:ns 
    k = (2*n+1)*pi/2/L;  
    for i = 1:length(tmesh) 
        for j = 1:length(xmesh) 



            sol_sep(i,j) = sol_sep(i,j) - (4*c0/(2*n+1)/pi) * exp(-

D*(k^2)*tmesh(i)) * sin(k*xmesh(j));       
        end 
    end 
end 

  
% Plot analytical solution 
figure(1) 
surf(tmesh,xmesh,sol_sep') 
title(['EDTA Diffusion: Separation of Variables (first ', num2str(ns), ' 

terms in series)']) 
xlabel('Time [s]') 
ylabel('Thickness [mm]') 
zlabel('Concentration, C(x,t), [M]') 

 

5.1.2 Numerical: Modeling Different Acid Demineralizers 

function ProjectDeCal_PDEPE 
close all 
clear all 
clc 

  
global L 
L = 2; %thickness of bone slice (mm) 

  
xmesh = 0:0.02:L; %x domain 
tmesh = 0:100:10000; %time domain 

  
%Solution using MATLAB PDE Solver 
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 
sol_pdepeHCl = pdepe(0,@pdefunHCL,@icHCl,@bcHCl,xmesh,tmesh); 
sol_pdepeHCl2 = pdepe(0,@pdefunHCL2,@icHCl2,@bcHCl2,xmesh,tmesh); 

  
%3D solution mesh [EDTA] 
figure(1) 
surf(tmesh,xmesh,sol_pdepe') 
title('EDTA Diffusion [0.7M]: Numerical (PDEPE)') 
xlabel('Time [s]') 
ylabel('Thickness [mm]') 
zlabel('Concentration, C(x,t), [M]') 

  
figure(2) 
A = sol_pdepe(1,:); 
B = sol_pdepe(20,:); 
C = sol_pdepe(100,:); 
plot(xmesh,A,'b',xmesh,B,'g',xmesh,C,'r'); 
xlabel('x [mm]'); 
ylabel('C(x,t) M'); 
axis([0 2 0 1]) 
legend('1 s', '2000 s', '10000 s'); 
title('Concentration in EDTA [0.7M] as a Function of Time') 

  
%3D solution mesh - HCL 
figure(3) 



surf(tmesh,xmesh,sol_pdepeHCl') 
title('HCl Diffusion [0.5M]: Numerical (PDEPE)') 
xlabel('Time [s]') 
ylabel('Thickness [mm]') 
zlabel('Concentration, C(x,t), [M]') 

  
figure(4) 
A = sol_pdepeHCl(1,:); 
B = sol_pdepeHCl(20,:); 
C = sol_pdepeHCl(100,:); 
plot(xmesh,A,'b',xmesh,B,'g',xmesh,C,'r'); 
xlabel('x [mm]'); 
ylabel('C(x,t) M'); 
axis([0 2 0 1]) 
legend('1 s', '2000 s', '10000 s'); 
title('Concentration in HCl [0.5M] as a Function of Time') 

  
%3D solution mesh - HCL 2M 
figure(5) 
surf(tmesh,xmesh,sol_pdepeHCl2') 
title('HCl Diffusion [2M]: Numerical (PDEPE)') 
xlabel('Time [s]') 
ylabel('Thickness [mm]') 
zlabel('Concentration, C(x,t), [M]') 

  
figure(6) 
A = sol_pdepeHCl2(1,:); 
B = sol_pdepeHCl2(20,:); 
C = sol_pdepeHCl2(100,:); 
plot(xmesh,A,'b',xmesh,B,'g',xmesh,C,'r'); 
xlabel('x [mm]'); 
ylabel('C(x,t) M'); 
axis([0 2 0 2]) 
legend('0 s', '2000 s', '10000 s'); 
title('Concentration in HCl [2M] as a Function of Time') 
% -------------------------------------------------------------- 
figure(7) 
A = sol_pdepe(20,:); 
B = sol_pdepeHCl(20,:); 
C = sol_pdepeHCl2(20,:); 
plot(xmesh,A,'b',xmesh,B,'g',xmesh,C,'r'); 
xlabel('x [mm]'); 
ylabel('%C_o(x,t) M'); 
axis([0 2 0 1.5]) 
legend('0.7 M EDTA', '0.5 M HCl', ' 2 M HCl'); 
title('Effect of Demineralization Agent, t= 2000s') 

  
figure(8) 
A0 = sol_pdepe(1,:); 
B0 = sol_pdepeHCl(1,:); 
C0 = sol_pdepeHCl2(1,:); 
plot(xmesh,A0,'b',xmesh,B0,'g',xmesh,C0,'r'); 
xlabel('x [mm]'); 
ylabel('%C_o(x,t) M'); 
axis([0 2 0 1.5]) 
legend('0.7 M EDTA', '0.5 M HCl', ' 2 M HCl'); 



title('Effect of Demineralization Agent, t= 0 s') 

  
figure(9) 
A1 = sol_pdepe(:,101); 
B1 = sol_pdepeHCl(:,101); 
C1 = sol_pdepeHCl2(:,101); 
plot(tmesh,A1,'b',tmesh,B1,'g',tmesh,C1,'r'); 
xlabel('time [s]'); 
ylabel('%C_o(x,t) M'); 
axis([0 10000 0 1.5]) 
legend('0.7 M EDTA', '0.5 M HCl', ' 2 M HCl'); 
title('Effect of Demineralization Agent, x=L') 

  
% function definitions for pdepe: 
% -------------------------------------------------------------- 

  
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
D=0.00095; 
c = 1; 
f = D * DuDx; % diffusion 
s = 0; % homogeneous, no driving  

  
function [c, f, s] = pdefunHCL(x, t, u, DuDx) 
% PDE coefficients functions 
D=0.00231; %Diffusion constant HCl 0.5M 
c = 1; 
f = D * DuDx; % diffusion 
s = 0; % homogeneous, no driving term 

  
function [c, f, s] = pdefunHCL2(x, t, u, DuDx) 
% PDE coefficients functions 
D=0.00133; %Diffusion constant HCl 2M 
c = 1; 
f = D * DuDx; % diffusion 
s = 0; % homogeneous, no driving term 

  
% -------------------------------------------------------------- 
function u0 = ic(x) 
% Initial conditions function 
c0=1; %0.7 M (Normalized to 1); %EDTA [M] 
u0 = c0 * (x==0); % delta impulse at left boundary condition 

  
function u0 = icHCl(x) 
% Initial conditions function 
c0=1; %0.5 M (Normalized to 1); %HCl [M] 
u0 = c0 * (x==0); % delta impulse at left boundary condition 

  
function u0 = icHCl2(x) 
% Initial conditions function 
c0=1; %2 M (Normalized to 1); %EDTA [M] 
u0 = c0 * (x==0); % delta impulse at left boundary condition 
% -------------------------------------------------------------- 
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 



c0=1; %0.7 M (Normalized to 1); %EDTA [M] 
pl = c0-ul; % left boundary condition 
ql = 0; % no flux left boundary condition 
pr = 0; % zero value right boundary condition 
qr = 1; % no flux right boundary condition 

  
function [pl, ql, pr, qr] = bcHCl(xl, ul, xr, ur, t) 
% Boundary conditions function 
c0=1; %0.5 M (Normalized to 1); %EDTA [M] 
pl = c0-ul; % left boundary condition 
ql = 0; % no flux left boundary condition 
pr = 0; % zero value right boundary condition 
qr = 1; % no flux right boundary condition 

  
function [pl, ql, pr, qr] = bcHCl2(xl, ul, xr, ur, t) 
% Boundary conditions function 
c0=1; %2 M (Normalized to 1); %EDTA [M] 
pl = c0-ul; % left boundary condition 
ql = 0; % no flux left boundary condition 
pr = 0; % zero value right boundary condition 
qr = 1; % no flux right boundary condition 

5.2 Case 2: Numerical: Reaction with Calcium 

function Condition2 

close all 

clear all 

clc 

  

global D L c0  

D = 0.95E-3; %diffusion coefficient (mm2/s) 

L = 2; %thickness of bone slice (mm) 

c0 = .7; %initial concentration (M) 

  

xmesh = 0:0.02:L; %x domain 

tmesh = 0:100:10000; %time domain 

  

%Solution using MATLAB PDE Solver 

sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 

  

%3D solution mesh 

figure(1) 

surf(tmesh,xmesh,sol_pdepe') 

title('EDTA Diffusion: Condition 2') 

xlabel('Time [s]') 

ylabel('Thickness [mm]') 

zlabel('Concentration, C(x,t), [M]') 

  

figure(2) 

A = sol_pdepe(1,:); 

E = sol_pdepe(5,:); 

B = sol_pdepe(20,:); 

C = sol_pdepe(100,:); 

plot(xmesh,A,'b',xmesh,E,'m',xmesh,B,'g',xmesh,C,'r'); 

xlabel('x [mm]'); 



ylabel('C(x,t) [M]'); 

legend('1 s', '500 s', '2000 s', '10000 s'); 

title('Concentration of EDTA [0.7 M] as a Function of Time: Condition 2') 

  

% function definitions for pdepe: 

% -------------------------------------------------------------- 

  

function [c, f, s] = pdefun(x, t, u, DuDx) 

% PDE coefficients functions 

global D  

c = 1; 

f = D * DuDx; % diffusion 

s = -0.00000002*t; % sink dependent on time 

  

% -------------------------------------------------------------- 

function u0 = ic(x) 

% Initial conditions function 

global c0 

u0 = c0 * (x==0); % delta impulse at left boundary condition 

  

% -------------------------------------------------------------- 

function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 

% Boundary conditions function 

global c0 L 

pl = ul-c0; % constant value left boundary condition 

ql = 0; % no flux left boundary condition 

pr = 0; % no value right boundary condition 

qr = 1; % zero flux right boundary condition 

5.3 Case 3: Numerical: Flow Conditions 

function Condition2 

close all 

clear all 

clc 

  

global D L c0  

D = 0.95E-3; %diffusion coefficient (mm2/s) 

L = 2; %thickness of bone slice (mm) 

c0 = .7; %initial concentration (M) 

  

xmesh = 0:0.02:L; %x domain 

tmesh = 0:100:10000; %time domain 

  

%Solution using MATLAB PDE Solver 

sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 

  

%3D solution mesh 

figure(1) 

surf(tmesh,xmesh,sol_pdepe') 

title('EDTA Diffusion: Condition 2') 

xlabel('Time [s]') 

ylabel('Thickness [mm]') 

zlabel('Concentration, C(x,t), [M]') 

  

figure(2) 



A = sol_pdepe(1,:); 

E = sol_pdepe(5,:); 

B = sol_pdepe(20,:); 

C = sol_pdepe(100,:); 

plot(xmesh,A,'b',xmesh,E,'m',xmesh,B,'g',xmesh,C,'r'); 

xlabel('x [mm]'); 

ylabel('C(x,t) [M]'); 

legend('1 s', '500 s', '2000 s', '10000 s'); 

title('Concentration of EDTA [0.7 M] as a Function of Time: Condition 2') 

  

% function definitions for pdepe: 

% -------------------------------------------------------------- 

  

function [c, f, s] = pdefun(x, t, u, DuDx) 

% PDE coefficients functions 

global D  

c = 1; 

f = D * DuDx; % diffusion 

s = -0.00000002*t; % sink dependent on time 

  

% -------------------------------------------------------------- 

function u0 = ic(x) 

% Initial conditions function 

global c0 

u0 = c0 * (x==0); % delta impulse at left boundary condition 

  

% -------------------------------------------------------------- 

function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 

% Boundary conditions function 

global c0 L 

pl = 0.005*(sin(t)+c0); % left flux boundary condition a function of time 

ql = 1; % flux left boundary condition exists 

pr = 0; % no value right boundary condition 

qr = 1; % zero flux right boundary condition 
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